
A Proposal of FPGA-based Low Cost and Power
Efficient Autonomous Fruit Harvester

Kumar Nilay†, Swarnabha Mandal†, Yash Agarwal †, Rishabh Gupta†,
Sumeet Kumar†, Poojan Shah†, Sombit Dey†, Manthan Patel†, Annanya†

Abstract—In this paper, we present a power-efficient and low-
cost prototype of a robotic harvester which employs multiple
subsystems such as fruit detection, odometry, localization, profi-
cient manipulation through computer vision, deep learning and
a novel end-effector design. Fruit Plucking is performed using
an end effector, and 3-degree of freedom(DOF) arm (made
out of the integration of two linear actuators and a rotating
platform) consolidated with a 4-wheeled differential drive mobile
platform. Effective implementation of the visual processing is
executed on the FPGA Fabric of the Xilinx PYNQ-Z2 Board,
which accelerates Deep Neural Networks (DNNs) with improved
Latency and Energy Efficiency as compared to a CPU or GPU
based implementation.

Index Terms—autonomous vehicle; autonomous fruit plucking;
control system; object detection

I. INTRODUCTION

The horticulture industry remains heavily manual labour
intensive and is profoundly affected by labour costs. The grow-
ing and changing demands need to be met by the agriculture
industry that is facing labour shortages and rising costs for
labour work. Farmers are increasingly relying on technology
to make their farms more productive. The significant setbacks
they face is due to the exorbitant prices of the machines
in the market. The shift of agricultural tasks to automation
ha improved every phase of the agricultural process, which
includes pre-harvest, to harvest and post-harvest steps. The
significant contribution of our work is:-
• Development of a power-efficient bot which is enabled

by FPGA, a low-power embedded system which shows
optimization in both power consumption and performance
in Deep Neural Networks (DNNs) applications.

• The biggest challenges for the cost-effective robotic-fruit
plucker are detection, i.e. determining the location of each
fruit and detaching them from the plant without harming
the plant in the absence of costly sensors and processing
unit.

• We demonstrate a simple and effective vision-based al-
gorithm for fruit, a 3D localization, and grasp selection
method.

The remainder of this work will cover our contributions to
accomplish the challenging task: design of a mobile robot

†Denotes equal contribution

Fig. 1: A SolidWorks model of robot

(Sec. 3); Embedded Architecture (Sec. 4); Navigation and
Controls (Sec. 5); object detection and visual servoing (Sec.
6); and finally we conclude in (Sec. 7).

II. RELATED WORK

There has been quality research on the design and devel-
opment of autonomous vehicle control system, fruit plucking
and obstacle avoidance strategy.

In [1]similar visual servoing work is done where the bot is
used to find a tool panel on a field, pick an appropriate wrench
from the panel, and therewith operate a valve stem, where 3D
point clouds acquired from a laser scanner are used along
with Support Vector Machines (SVM) + Histogram of Ori-
ented Gradients (HOG) object detector. In an earlier research
project, a similar design of robotic arm (joint manipulator)
was proposed [2]. The manipulator has been tested to avoid
obstacles by curve fitting function and multiple DOF.

In [3], a feature-based approach for image-based fruit seg-
mentation is proposed. The algorithm is tested for multi-class
image segmentation for apple. The experiments shown in the
paper classifies output to provide reliable apple yield estima-
tion. In another paper [4], an autonomous robot attempted to
harvest sweet pepper using a blade attached to the end-effector.

Different cycle times (fruit per second) and fruit picking
efficiency (per cent of fruits reachable) was measured [5]



using the kinematic model of the robot and dynamics of the
manipulators respectively. Attempts have been made to reduce
the cost of the robot by using low-cost stereo vision camera
combined with a robotic arm [6]. Microsoft Kinect Sensor
has been used in [7] for characterization of various small-
structured vegetation structures.

In [8], different approaches are used for the accurate detec-
tion of fruits and to pluck them using a mechanical gripper
tool. A monocular camera and a stepper motor are used in [9]
for generating the depth maps of the environment.

III. MECHANICAL SYSTEM

A. Design Overview

Robot’s mechanical system consists of chassis, actuators
and a 3-DOF robotic arm with an end-effector as shown in
Fig 1. The chassis structure provides mounting points and
protection for sensors and actuators. Assemblies are designed
in SolidWorks, simulated using ANSYS finite element analysis
(FEA) software.

B. Drive Mechanism

Locomotion of the robot is achieved by a four-wheel differ-
ential drive which can take a zero radius turn about its centre
of mass with some drift. The bot is driven by four high torque
DC geared motors of the specifications- 30 RPM, 12V and
60 kg-cm torque with metal gears having a shaft diameter of
6mm, length of 30mm.

C. Robotic Arm with end effector

The prototype is such that the robot can pluck fruits at
different heights according to the requirement, as shown in
Fig. 2. [10] The arm has twisted revolute, prismatic joints
mechanism [2] to change the pitch and yaw angle and extend
the reach of the arm. The arm extension velocity is constant,
i.e. 1.4 cm/sec and the maximum extension achieved is 40 cm.
The payload capacity of the actuator is 200 N. It provides a
plucking height range from 44cm to 150cm from the ground.
The bot uses a 3-D printed three finger gripper which offers
the sufficient amount of grip on the fruits having the diameter
in the range 4cm to 9cm. The pressure sensor is attached at
the centre of the fingers so that the pressure applied does not
cross the safety limit, which otherwise would crush the fruit.

IV. EMBEDDED ARCHITECTURE

A. Fast And Power Efficient Processor

The PYNQ Z2 ZYNQ works on 650MHz ARM Cortex-A9
dual-core processor. Overlay is used to accelerate the Neural
Network on the FPGA fabric.

It is desirable to minimize the energy spent per image
classification, which corresponds to maximizing the FPS per
watt when many images are to be classified. Atmega 2560 is
used for low-level interfacing of actuators and sensors.

TABLE I: Sensor specification

Microsoft Kinect Depth stream range: 0.4–5m, Field of View(FoV):
43°vertical × 57°horizontal, 30 fps

Logitech C270 Field of View (FOV): 60°, Frame Rate: 30fps @
640×480

Razor IMU ITG-3200 (MEMS triple-axis gyro), ADXL345
(triple-axis accelerometer), and HMC5883L (triple-
axis magnetometer) - nine degrees of inertial mea-
surement

Origin GPS NMEA protocol, Position determination accuracy:
2.5m, Supply Voltage: 1.8V

Rotary Encoder 2 Channel Quadrature Encoder having 2000 Counts
Per Revolution

Pressure Sensor 1.75×1.5” sensing area, Force in the range 10g–
10Kg

Fig. 2: Overview of plucking algorithm

V. NAVIGATION AND CONTROLS

A. Localization

Data from multiple sensors are used to estimate the state
of the bot using a sensor fusion technique. The Localization
module fuses the data from the encoders(one on each wheel),
IMU and GPS using Extended Kalman filter (EKF) [11] to
estimate the state vector. defined as:

X = [R, Ṙ]T

where R = [x, y, z, ψ, θ, φ] and x, y, z are the spatial
coordinates and ψ, θ, φ are rotation angles along x, y and
z-axis respectively. EKF is often employed to estimate the
states of the object with high accuracy even in the presence of
sensor noise. We have used the EKF implementation available



in robot localization, a ROS package, which takes the sensors
data and measurement uncertainty to estimates the state vector
of the vehicle. More detailed information on this can be found
in Thrun et al [12]. Fig 3 displays the path traversed by the
robot and Fig 4 shows the closed loop error of the estimate
from the robot localisation.

Fig. 3: Localisation track and loop closure

Fig. 4: Loop closure error

B. Path Tracking

The robot maneuvers on a predefined path, specific to the
farm, which is produced by manually driving the robot before
deploying it in autonomous mode. The geometric path is
generated, taking into consideration the estimated state space
of the robot and the plantation rows.

1) Pure Pursuit: Pure pursuit tracking algorithm [13] has
been used for tracking the predefined path. The real pursuit
method is the most common geometrical method used for
path tracking. It determines a goal point (gx, gy) on the
path based on a fixed look-ahead distance from the centre
of the differential drive mechanism, and calculates the radius
of curvature of the arc that connects these two points. By
applying the law of sines in Fig. 5

ld
sin(2α)

=
R

sin(π2 − α)

Fig. 5: Pure Pursuit

Fig. 6: Predefined Path Fig. 7: Differential Kinematics

ld
2 sin(α) cos(α)

=
R

cos(α)

ld
sin(α)

= 2R

2) Differential Drive Kinematics: Using the value of R and
the longitudinal velocity V, ω of the bot is calculated. Since
the bot has a differential drive, the given longitudinal velocity
and ω is converted into individual velocities of the left and
right motors (Fig. 7)

ω =
V

R

Vr = ω(R+
l

2
)

Vl = ω(R− l

2
)

Where l is the distance between the left and right wheels.
A PID controller [14] has been implemented for either

side to achieve the desired velocity as calculated above. The
independent implementation of the two controllers ensures
efficient path tracking. In the PID loop, we continuously
monitor the angle between the heading vector of the bot and
the position vector of the fruit w.r.t the CG of the robot. Once
this angle is in a specific range of about 60, the velocity of
the bot is set to zero to stall the movement of the bot on the
predefined trajectory, and the control is switched over to the
robotic arm controller for fruit plucking.

C. Robotic Arm Control

Assuming the position of the fruit (x, y, z) w.r.t. the base
of the arm and A being the total length of a linear actuator
then using eq (1) we can identify whether the fruit is within
the reach of the gripper or not.

Amin
2 < (x−A× sin(αz)× sin(αy))

2 + (y−A× sin(αz)

×cos(αy))2 + (z −A× cos(αz)− 65)2 < Amax
2 (1)

The position of the nearest fruit is used to determine the target
pitch and yaw angle of the robotic arm, which is calculated
from the data of Kinect.



Fig. 8: Disparity Map Fig. 9: RGB Image

VI. FRUIT DETECTION AND VISUAL SERVOING

Detection of fruits and finding their real-world coordinates
is the fundamental task necessary for fruit plucking. The key
elements for succeeding in this task are correct detection of
fruit, precise positioning of the detected fruits, and reliable
visual servoing.

As the main focus of our work is to keep the bot as cost
and power efficient as possible, we have used Microsoft Kinect
for generating the disparity map and hence generating precise
coordinates of the objects with respect to the camera frame.

A. Binary Neural Network

A Binary Neural Network (BNN) [15], runs on the FPGA
[16] via an overlay to classify any kind of subject (fruit)
present in the image. A sliding window detector is then used
to determine the position of the subject by giving the centre
coordinate of the fruit detected in the frame. BNN architecture
was trained on fruit classes of MS COCO [17] data-set (95.8%
classification accuracy). Images were reduced to 64 × 64
images with 24 bits/pixel to feed into BNN which contains
six 3× 3 convolutional layers, three 2× 2 max pooling layers
and three fully connected layers with 512 neurons each.

B. Determination of Global Coordinates of Detected Fruits

The Kinect has a monocular camera and two IR cameras
that enable us to determine the disparity map (Figure 8) of our
frame under consideration. Kinect is mounted at the front part
of the robot, which constantly takes video feed at 30 frames
per second(FPS), which is then transferred to the PYNQ-Z2
for further processing. The previously mentioned BNN [15]
based detector gives the position of all detected subjects in
the frame in the form of bounding boxes. Location of our
subjects in terms of coordinates with respect to the centre of
the camera is obtained through a simple transformations from
the Kinect’s raw disparity data.

1) Getting Object Position w.r.t Kinect: The Kinect is
mounted on the bot at a vertical inclination of 15 degrees.
The following transformations have been used to determine
the position the detected objects with respect to the plane of
the inclined camera.

z = b× f/(1/8× (doff − kd)) (2)

x = z × (u− w/2)× 1/f (3)

y = z × (v − h/2)× 1/f (4)

Fig. 10: Angle of Inclination

Where (x,y,z) denotes the position of the object with respect
to the camera at an inclined plane of projection.

kd : Kinect’s raw disparity
f : focal length of camera
doff : offset value particular to a given Kinect device,
typically equal to 1090.
b : baseline constant of Kinect= 7.5 cm.
(u,v) : position of center of detected object w.r.t screen.
(w,h) : resolution parameters of Kinect.
The factor 1/8 appears because the values of kd are in
1/8 pixel units.

2) Accounting the Inclination and Determination of Global
Coordinates: Considering the inclination of the camera, we
are now required to determine the position of the detected
object taking into account the tilt of the camera. Then, a
simple trigonometric transformation allows us to determine
the absolute global position of the object:[

cosθ −sinθ
sinθ cosθ

] [
z
y

]
=

[
z′

y′

]
Where (x’,y’,z’) represent the projected coordinates after ac-
counting the inclination.
Consider the centre of the camera to be m ahead and n above
the centre of the bot. Through the localization module we can
determine the position of the centre of the robot with good
accuracy. Suppose the position is (a,b,c).

Xw = a+ x′ (5)

Yw = b+ n+ y′ (6)

Zw = c+m+ z′ (7)

where (Xw, Yw, Zw) are the global coordinates of the
detected objects.

VII. RESULTS AND DISCUSSIONS

• The localization module was tested for the loop as shown
in (Fig 3). Loop closure error was found to be around
0.65m Fig. 4).

• The path tracking algorithm was tested on a predefined
path (Fig 6), and the cross-track error was plotted against
distance(m) which is shown in (Fig 11). A maximum
deviation of 0.3m was observed from the path and the
average deviation was around 0.2m.



TABLE II: Robot’s Plan Of Action

Fruit Selection Among the detected candidates, the nearest
one is brought to the lower threshold value
of the reach of the end effector and its
coordinates are stored. Then the bot stops
and stores the world coordinates of all the
candidates within the upper threshold in
a queue. Then bot proceeds to pluck the
nearest fruit by precise alignment of the arm
with the nearest fruit.

Fruit Tracking Once the nearest fruit is selected, it is ap-
proached by the gripper using visual ser-
voing. Our method uses image-based visual
servoing (IBVS) control technique, similar
to the method used in [1].

IBVS and Neural Network IBVS is used to align the gripper with
the fruit before grasping. During alignment,
proportional control is used along with the
BNN model [14] to ensure alignment.

Fruit Alignment Once the fruit is aligned at the center of the
frame, the linear actuator extends the end
effector and approaches the fruit.

Fruit Plucking As soon as the fruit touches the pressure
sensor attached on the gripper, then based
on the threshold value, the gripper closes
and plucks the fruit by retracing of the linear
actuator.

Fig. 11: Cross track error

• The accuracy on a testing set consisting of real-time
images was observed to be 95.8%.

• The current implementation resulted in roughly 30 FPS
output.

• The time to pluck one fruit ranges from 40-45 seconds
on an average.

• The robot was tested for 15 test runs in the self con-
structed farm having 28 fruits. An average of 18.67 fruits
were plucked with a standard deviation of 3.79 fruits.

VIII. FUTURE WORK

The developed prototype has performed up to expectations
in trials. We further aim to develop this prototype into a robust
agricultural robot which could reproduce trial results in Indian
fields. We target to implement changes such as track drive
instead of differential drive, Soft grippers instead of Hard
grippers and addition of extra modules like Pesticide Spraying,
Seeding. We also aim to implement several changes in the
design of robotic manipulator and platform, which would lead

to the addition of extra DOF. Hence we would be able to pluck
fruits like apples, guavas.

REFERENCES

[1] J. Carius, M. Wermelinger, B. Rajasekaran, K. Holtmann, and M. Hutter.
Autonomous Mission with a Mobile Manipulator. A Solution to the
MBZIRC, pages 559–573. 01 2018.

[2] Z. De-An, L. Jidong, J. Wei, Z. Ying, and C. Yu. ”Design and control
of an apple harvesting robot”. Biosystems Engineering - BIOSYST ENG,
110:112–122, 10 2011.

[3] C. Hung, J. Underwood, J. Nieto, and S. Sukkarieh. A Feature Learning
Based Approach for Automated Fruit Yield Estimation, pages 485–498.
Springer International Publishing, Cham, 2015.

[4] C. Lehnert, A. English, C. Mccool, A. Tow, and T. Perez. ”Autonomous
sweet pepper harvesting for protected cropping systems”. IEEE Robotics
and Automation Letters, PP:1–1, 01 2017.

[5] R. Arikapudi, A. Durand-Petiteville, and S. Vougioukas. ”Model-based
assessment of robotic fruit harvesting cycle times”. American Society
of Agricultural and Biological Engineers Annual International Meeting
2014, ASABE 2014, 7:5098–5104, 01 2014.

[6] D. Font, T. Pallej, M. Tresanchez, D. Runcan, J. Moreno, D. Martinez,
M. Teixido, and J. Palacn. ”A proposal for automatic fruit harvesting by
combining a low cost stereovision camera and a robotic arm”. Sensors
(Basel, Switzerland), 14:11557–11579, 07 2014.

[7] G. Azzari, M. Goulden, and R. Rusu. ”Rapid characterization of
vegetation structure with a microsoft kinect sensor”. Sensors (Basel,
Switzerland), 13:2384–98, 02 2013.

[8] Z. De-An, L. Jidong, J. Wei, Z. Ying, and C. Yu. ”Design and control
of an apple harvesting robot”. Biosystems Engineering - BIOSYST ENG,
110:112–122, 10 2011.

[9] B. Billiot, F. Cointault, L. Journaux, J. Simon, and P. Gouton. ”3d
image acquisition system based on shape from focus technique”. Sensors
(Basel, Switzerland), 13:5040–5053, 04 2013.

[10] H. Yaguchi, K. Nagahama, T. Hasegawa, and M. Inaba. Development of
an autonomous tomato harvesting robot with rotational plucking gripper.
pages 652–657, 10 2016.

[11] T. Moore and D. Stouch. ”A generalized extended kalman filter
implementation for the robot operating system”. In IAS, 2014.

[12] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[13] J. M. Snider. ”Automatic steering methods for autonomous automobile
path tracking”. Technical Report CMU-RI-TR-09-08, Carnegie Mellon
University, Pittsburgh, PA, February 2009.

[14] C S. Shijin and K Udayakumar. ”Speed control of wheeled mobile
robots using pid with dynamic and kinematic modelling”. pages 1–7,
03 2017.

[15] M. Courbariaux and Y. Bengio. ”BinaryNet: Training deep neural
networks with weights and activations constrained to +1 or -1”. CoRR,
abs/1602.02830, 2016.

[16] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. A. Vissers. FINN: ”A framework for fast, scalable binarized
neural network inference”. CoRR, abs/1612.07119, 2016.

[17] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. ”Microsoft COCO:
Common objects in context”. In ECCV, 2014.

View publication stats

https://www.researchgate.net/publication/340768691

